CMOS THz Detectors for Imaging

F. Schuster1,2, D. Coquillat2, H. Videlier2, M. Sakowicz2, JP. Rostaing1, B. Dupont1, B. Giffard1, W. Knap2

1CEA-LETI, MINATEC, Grenoble, FRANCE

2University of Montpellier, FRANCE
Outline

I. Introduction and Background
II. Detector Implementation
III. Detector Characterization
IV. THz Transmission Imaging
V. Summary
I. Introduction and Background

• **THz radiation:**
 – THz band: 300GHz – 3THz, $\lambda_0 = 1\text{mm} - 100\mu\text{m}$
 – Unique physical properties
 – Applications
 • Non-destructive testing/ quality control
 • Security imaging
 • Wireless communications
I. Introduction and Background

• FETs as THz detectors
 – Rectification of THz radiation
 • Radiation coupling: antenna or grating
 • Theories: Dyakonov-Shur plasma wave theory; distributed resistive self-mixing

\[V_{gs} \]: gate bias
\[U_a \]: irradiation induced ac voltage
\[\Delta U \]: photoresponse

THz, modulated

\[\Delta U : f_{mod} \]
I. Introduction and Background

• Si CMOS THz detectors
 – First demonstration in 2004, Knap group
 – Focal plane arrays in 2008, Pfeiffer & Roskos groups
 – This work: single detectors and arrays for 0.3-1.05 THz

II. Detector Implementation

• Test chip micrograph

- 0.13µm CMOS
- Bulk Si substrate
- 210µm pixel pitch
- Pixel variants
 - FET, antenna
 - amplifiers
- 3x4 pixel imager prototype: amps + multiplexing
II. Detector Implementation

- Pixel architecture

- Bow tie antenna in metal back end
- Rectifying nMOSFET, variations:
 - $L=130\text{nm} - 300\text{nm}$,
 - $W=250\text{nm} - 10\mu\text{m}$
- Optional: in pixel baseband amplifier, $G=31\text{dB}$
II. Detector Implementation

- Amplifier schematic

- pMOSFETs
- MIM capacitor for feedback
- $G=31\text{dB}$, 2MHz BW
- Low consumption $97\mu\text{W}@1.2\text{V}$
- Low input noise: $16\text{nV}/\text{Hz}^{0.5}@30\text{kHz}$
II. Detector Implementation

• Pixel micrograph
II. Detector Implementation

- 3x4 pixel imager with multiplexing

Pixel multiplexing with:
- 2 shift registers
- 2 clock, 2 reset signals
II. Detector Implementation

- Pixel multiplexing
 - Shift register with D-flip-flops
III. Detector Characterization

• Set-up

![Diagram of detector setup]

- THz Source
- Chopper
- Parabolic Mirror
- Plane Mirror
- Test Chip on Translation Stage
- Lock-In
- Ref.
- Vout
- X, Y
III. Detector Characterization

• Set-up

THz Source
Parabolic Mirrors
Chopper
Translation Stage
Imager

III. Detector Characterization

• Set-up: beam power measurement
 – THz power meter, *Thomas Keating*
 – Large aperture: 3 x 4cm
III. Detector Characterization

- Results 1/5: pixels without amplifier
 Raster scan image of source beam at 300GHz

\[V_{gs} = 0.1 \text{V} \]
\[P_{beam} = 2 \text{mW} \]

\[\Delta U_{\text{max}} = 19 \text{mV} \]

\[R_v = \frac{\int \int \Delta U \, dx \, dy}{P_{\text{beam}} \cdot A_{\text{det}}} \]

\[A_{\text{det}} = (\text{pixel pitch})^2 \]
III. Detector Characterization

- Results 2/5: pixels without amplifier
 Responsivity & NEP at 300GHz

\[NEP = \sqrt{4kT R_{ds}} / R_v \]

\[NEP_{\text{min}} = 8 \text{ pW/Hz}^{0.5} \]
III. Detector Characterization

- Results 3/5: pixel C14 without amplifier
 Responsivity from 270-1050 GHz

\[R_{v,\text{max}} = 5 \text{kV/W} \]
III. Detector Characterization

• Results 4/5: pixel with amplifier,
 Raster scan image of source beam at 300GHz

\[V_{gs} = 0.1 \text{V} \]

\[P_{beam} = 0.8 \text{mW} \]

\[V_{out,\text{max}} = 165 \text{mV} \]
III. Detector Characterization

- Results 5/5: pixel with amplifier. Detector signal & responsivity at 300GHz

\[R_{v,max} = 90 \text{ kV/W} \]
IV. THz Imaging

- **Transmission** imaging of objects
IV. THz Imaging, 300GHz

- chocolate with metal object inside
 → application: food control
IV. THz Imaging, 300GHz

- tree leaves → agriculture: water saving

![Leaf Images](image1)

![THz Image](image2)

225x600 scanned points
V. Summary

- Demonstration of sensitive THz detectors & 3x4 pixel array in CMOS
 - nMOSFET THz detectors
 - Integrated broad band bow tie antennas
 - Pixel consumption <100µW
 - High responsivities: 90kV/W @300GHz, 1.8kV/W @1.05THz
 - Low NEP: <10pW/Hz^{0.5} @300GHz
 - High quality THz images @300GHz
Recent Publications

Acknowledgements

• Partial funding from:
 – French Ministry of Defense
 – STMicroelectronics through Nano 2012 Project
Thank you!
Questions?